

Crack Notes [Physics 5] Fluids & Solids

Fluids

- Molecules have <u>high kinetic energy</u>
- Intermolecular bonds break & reform rapidly
- Exerts <u>pressure/force</u> on wall of container

Density

- $\rho = m/V$, density of water is $\rho_{water} = 1000 \ kg/m^3 = 1 \ g/cm^3$
- Intensive property (doesn't depend on amount)
- Compression can change density but we can assume liquids/solids are incompressible
- Specific gravity: $SG = \rho_{substance}/\rho_{water}$ (SG > 1 means heavier than water, < 1 means lighter)

Pressure

- Caused by molecular collisions
- \bullet P = F/A
- Fluid at rest (nonmoving): $P = \rho gy$ where y is depth
 - o For multiple layers of fluid, you can add pressures
 - o If container is open, must also add atmospheric pressure = 101 kPa
- Pascal's principle: if you add pressure anywhere, it'll be spread out everywhere assumes incompressible
 - $\circ \ \ \textit{Hydraulic lift:} \ \ F_1d_1 = F_2d_2, \ \frac{F_1}{A_1} = \frac{F_2}{A_2}, \ \ A_1d_1 = A_2d_2$

Force

- Archimedes' principle: object inside water has buoyant force due to difference in pressures
- Buoyant force equal to weight of displaced fluid, $F =
 ho_{fluid} V_{submerged} g$
 - o V is volume of object that's submerged in water = m_{object}/ρ_{object}
 - o If object isn't completely in the water, only consider V that's in the water
 - o Floating object: fraction submerged = $\rho_{object}/\rho_{water}$ = specific gravity of object
- Center of buoyancy is always physical center of object, if center of mass isn't physical center then a torque is created

Motion

- Random translational motion: contributes to fluid pressure
- <u>Uniform translational motion</u>: motion of fluid as a whole, doesn't contribute to pressure

Ideal fluid

- No viscosity (resistance to flow, how "syrupy" fluid is)
- Incompressible (uniform density)
- Flows without turbulence (all points flow at same speed)
 - \circ Volume flow rate Q = Av, A is cross sectional area, v is velocity of all fluid particles
 - Pipe that changes cross sectional area: $A_1v_1 = A_2v_2$

Nonideal fluid

• Drag/viscosity will decrease flow velocity

Crack Notes [Physics 5] Fluids & Solids

Bernoulli's equation:

$$P + \rho g h + \frac{1}{2} \rho v^2 = constant$$

- *h* is height of fluid above ground
- Random motion KE + gravitational PE + uniform motion KE = constant

Applications:

- (1) Hole in bottle of fluid, distance h below surface of water: $v = \sqrt{2gh}$
- (2) Velocity increases when pressure decreases, so in a pipe, wider = more pressure

Intermolecular forces create surface tension, cohesion/adhesion

Solids

- Stress = force applied / area where it's applied
- Strain = change in shape / original shape
- Young's modulus: tensile (squishing/pulling), $E = \frac{F/A}{\Delta h/h_0}$
- <u>Shear modulus</u>: shear (tearing), $G = \frac{F/A}{\Delta x/h_0}$
- <u>Bulk modulus</u>: compression/expansion, $B = \frac{\Delta P}{\Delta V/V_0}$